

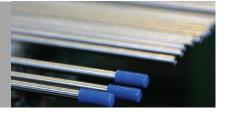
Across the complete production process of nitrogen and phosphate based fertilizers, melamine, nitric acid and syngas our range of DMV grades offer solutions to the most challenging of corrosive environments.

- Heat exchanger tubes for heat transfer between different corrosive process environments
- Pipes for process production
- Instrumentation tube for controlling and monitoring temperature and pressure

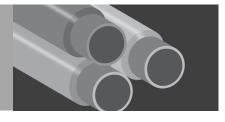

Products and Solutions


Heat Exchanger tubes

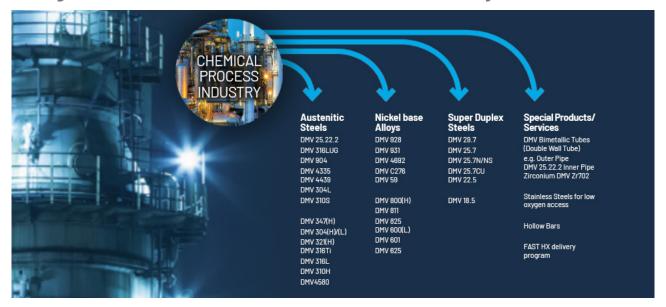
Up to 43 m long (110 ft) Straight or 'U' bent Carbamate condensers Scrubbers Strippers


Pipe

1/8" NB to 10" NB 10.3 mm to 273.0 mm DN 3 to DN 250



Instrumentation Tubes


6 mm (1/4") to 25 mm (1") outside diameter

Inside DMV 702 minimum thickness 0.7 mm Outside DMV 25.22.2 minimum thickness 2 mm Cold Drawn

DMV grade solutions for the Chemical Process Industry

UREA: CARBAMATE: CO(NH2)2 the basis for today's production of nitrogen release fertilizer. Urea is produced from synthetic ammonia (NH3) and carbon dioxide CO2 with the first step being conversion to liquid ammonium carbamate (NH2COONH4) in a reactor under pressure at 150-200 bar and 180-190°C.

Second step is conversion of the ammonium carbamate to Urea, ie:

$NH_2COONH_4 = CO(NH_2)_2 + H_2O$

Ammonium carbamate solutions are highly corrosive in the hottest parts of the plant such as condensers, scrubbers and strippers.

Ammonium carbamate solutions are processed into condensates from the stripper with highly corrosive process environments around 180-250°C and 150 bar.

Conventional austenitic stainless steels such as 304L and 316L are unable to withstand such environments leading to the development of DMV Grades suitable for applications across the production process.

SYNGAS: (or Synthesis Gas) is a mixture of hydrogen and carbon monoxide with principle use in the production of ammonia (NH3) or methanol (CH3OH). Syngas is produced by steam reforming or partial oxidation of natural gas or liquid hydrocarbons.

CH4 + H20 = CO + 3H2

Syngas is used a source of $\mbox{\rm H}\mbox{\rm 2}$ and in the direct reduction of iron ore to sponge iron.

NITRIC ACID (HN03): is used a primary reagent for the nitration process with its main industrial use being the production of fertilizers where nitric acid is neutralised with ammonia to ammonium nitrate. (NH4NO3).

Supporting requirements for urgent tube replacement- breakdowns, unplanned outages we offer our FAST HX product across a range of defined sizes and sizes.

In addition, we maintain raw material stocks to support urgent requirements for Nickel alloys such as DMV C276 and DMV 625.

Contact us via your usual Sales contact or at

HX@mst.mannesmann.com

For more details visit:

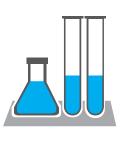
www.mannesmann-stainlesstubes.com/hx/

GRADES & CAPABILITIES: FERTILIZER

	Austenitic														
DMV Designation	Nearest equivalent			Typical Chemical composition					Density		Min. Mechanical Prop. at RT				
	UNS EN JIS		Cmax	Cr	Ni	Mo	Cu	Others			Yield S	t. RP0.2	Tensile	St. Rm	
										g/cm³	lb/in³	MPa	ksi	MPa	ksi
DMV 304L	\$30403	1.4306 1.4435	SU 304L	0.03	19.0	11.0				7.9	0.29	170	25	485	70
DMV 316LUG	\$31603	1.4361 1.4439		0.02	17.0	13.5	4.5			8.0	0.29	170	25	485	70
DMV 306Si	\$30600	1.4435		0.015	18.0	15.0			Si 4	7.9	0.29	240	35	540	78
DMV 4439	(\$31726)	1.4466		0.03	17.5	13.5	4.5		N 0.16	8.0	0.29	240	35	550	80
DMV 4335	\$31002	1.4845		0.015	25.0	20.5			N< 0.10 %	7.9	0.29	255	37	540	78
DMV 25.22.2	\$31050	1.4539		0.02	25.0	22.0	2.0		N 0.12	7.9	0.29	255	37	540	78
DMV 310S	\$31008			0.015	25.0	21.0				7.9	0.29	205	30	515	75
DMV 904				0.02	20.5	25.5	4.5	1.5		8.0	0.29	215	31	490	71

Austenitic Ferritic															
DMV Designation	Nearest equivalent			Typical Chemical composition					Density		Min. Mechanical Prop. at RT				
	UNS	EN	JIS	Cmax	Cr	Ni	Mo	Cu	Others			Yield S	t. RP0.2	Tensile	e St. Rm
										g/cm³	lb/in³	MPa	ksi	MPa	ksi
DMV 22.5	\$31803	1.4462 1.4501		0.03	22.0	5.5	3.0	0.5	N 0.17 ²⁾	7.8	0.28	450	65	620	90
DMV 25.7N	S32760	1.4410 1.4477		0.03	25.0	7.0	4.0	0.25	N 0.25; W 0.5 ²⁾	7.8	0.28	550	80	750	109
DMV 25.7NS	\$32750			0.03	25.5	7.0	4.0	<0.80	N 0.3 ²⁾	7.8	0.28	550	80	750	109
DMV 29.7	\$32906			0.03	29	7	2.3		N 0.35 ²⁾	7.8	0.28	650	394	800	116

Nickel and Nickel-based alloys															
DMV Designation				Typical Chemical composition						Density		Min. Mechanical Prop. at RT			
	UNS	EN		Cmax	Cr	Ni	Мо	Cu	Others			Yield :	St. RP0.2	Tensile	St. Rm
										g/cm³	lb/in³	MPa	ksi	MPa	ksi
DMV 928	N08028	1.4563 1.4562		0.02	27.0	31.0	3.5	1.2	N 0.10	8	0.29	210	31	500	73
DMV 931	N08031	2.4692 2.4605		0.015	27.0	31.0	6.5	1.2	N 0.20	8.1	0.29	280	41	650	94
DMV 4692	N08034	2.4819		0.01	27	35	6.5	1.5	N 0.20	8.1	0.29	310	45	750	108
DMV 59	N06059			0.01	23.0	59.0	16.0		Al	8.6	0.31	340	50	690	100
DMV C276	N10276			0.01	16.0	57.0	16.0		W	8.4	0.30	350	51	750	109


 $^{^{1\!} J}\text{All}$ figures in weight percentage. In case of order, the limits of the order specification will apply.

TOLERANCES

 $\label{thm:conding} \mbox{According to typical manufacturing Norms or individual customer requirements.}$

Outside Diameter	Hot Extruded		Cold Finished Tubes	
EN ISO 1127 tolerance class	D2	D2	D3	D4
Permissible deviation	± 1.0% (min. ± 0.5 mm (±0.0197"))	± 1.0% (min. ± 0.5 mm (±0.0197"))	± 0.75% (min. ± 0.3 mm (±0.0012"))	± 0.5% (min. ± 0.1 mm (±0.0039"))
Wall Thickness	Hot Ex t ≤ 5 mm (0.1969")	i ruded > 5 mm (0.1969")	Cold Fi	nished
EN ISO 1127 tolerance class	ΤΊ	T2	Т3	T4 (on request)
Permissible deviation	± 15.0% (min. ± 0.6 mm (±0.0236"))	± 12.5% (min. ± 0.4 mm (±0.0157"))	±10% (min. ± 0.2 mm (±0.0074"))	± 7.5% (min. ± 0.05 mm (±0.002"))

 $^{^{2)}\}mbox{Min}$ PRE value controlled.

FERTILIZER

HEAT EXCHANGERS

PRECISION TUBE

DISTRIBUTION

BIMETALLIC TUBES

Quality: Zero Accident - our goal, our focus, our culture.

Across our Global manufacturing locations the health & safety of everyone on our sites is paramount. The wellbeing of employees, contractors and visitors remains our number one priority.

At Mannesmann Stainless Tubes we take pride in meeting and exceeding our Customer's Quality Expectations.

We encourage and seek feedback on our performance and from this how we may learn and continuously improve. In our most recent Customer Survey we obtained a 100% Quality Score across our Global Manufacturing plants.

We have Quality Management Systems which are approved by the world's

leading organisations such as: ASME, ISO, TUV, DNV, JIS and Lloyd's Register.

Our Customer approvals & accreditations reflect our commitment to the manufacture of the highest integrity products.

MST QR code system to fight fake products

All of our orders are shipped with QR code validated certificates. Expect authentic Mannesmann quality tubes only with validated QR code.

While our Company has compiled and organized this data to the best of its knowledge, the data is provided on an "as is" basis only. To the fullest extent permissible by applicable law, we neither make any representation nor give any warranty -neither express, implied or statutory- regarding this data, including, but not limited to, with respect to completeness, accuracy, reliability, security, timeliness, fitness or suitability for any particular purpose, merchantability or any decisions you may make based on it. To the same extent, our company does not assume any other liability regarding this data for any direct, indirect or consequential or any other losses or damages of whatsoever kind (whether based on contract, tort, delict, warranty or any other legal theory) resulting from its use. The use of this data is at your own risk, unless otherwise agreed in writing. Our company reserves the right to modify its content at its own discretion at any time and without prior notice."